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OBJECT lVE Our purpose was to evaluate an artificial neural network in the |nterpretat|on of nonstress

tests. -

-STUDY DESIGN: A nonlinear artificial neural network trained by backpropagation was taught to interpret
records of nonstress tests by two learning sets. The first set contained nonstress tests that were similarly
interpreted by three human experts; the second set contained a subset of nonstress tests that led to
interobserver disagreement. Both “raw” fetal heart rate and uterine contraction data and 17 quantified
variables obtained by automated computer analysis were introduced to the input layer. After training, the
network was tested by presenting it with input patterns to which it had not been exposed. The
performance of the system was examined in relation to the human expert.

RESULTS: After training the neural network with the first set, a sensitivity of 88.9% and a false-positive
rate of 4.3% were obtained at testing. When the learning and test set contained records that led to
interobserver disagreement, a sensitivity of 86.7% and a false-positive rate of 19.7% were obtained. Sixty
percent of fetal heart rate records interpreted as abnormal by the neural network were interpreted fikewise

by the human experts.

CONCLUSIONS: The results obtained are encouraging in that the neural network couid discriminate
between normal and abnormal nonstress tests. Further evaluation of this new technique is mandatory to
evaiuate its efficacy and reliability in interpreting fetal heart rate records. (Am J Osster GYNECOL

1995;172:1372-9.)
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Since its introduction about two decades ago™ * the
nonstress test (NST) continues to be the most com-
monly used modality for the evaluation of fetal status
during the antepartum period. Various definitions of
reactivity have been used, but no standards were
adopted, making it difficult to compare the different
results. The American College of -Obstetricians and
Gynecologists provided some recommendations for de-
fining a reactive NST,® but different mterpretatwe al-
gorithms are still used in many centers. In a critical
review of the NST* it was suggested that the shortcom-
ings of test interpretation based solely on the observa-
tion of reactive accelerations could be improved by the
use of additional information that is already present in
fetal heart rate (FHR) records. Such additional param-
eters include baseline FHR, beat-to-beat variation, and
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FHR decelerations.” ® Another potential limitation of
NST interpretation is the low interobserver and in-
traobserver agreement associated with visual assess-
ment of FHR records.”

Automated analysis of the NST was recently intro-
duced in an attempt to achieve reproducible, objective
analysis of FHR records.” '* Such computer software
was programmed to perform calculations and generate
conclusions on the basis of the same or on a more
extensive analytic array than the human expert is using.

However, although the computer measures events in
the NST (e.g., accelerations, decelerations, FHR varia-
tion), the human interpreter relies primarily on pattern
recognition. This was demonstrated in one study that
showed that the age of the observer, years of experience
with NST interpretation, and the volume of tests per-

formed added minimal improvement to observer ac-

Cmcy.“

The FHR is a “chaotic” signal and may contain more
diagnostic information than is visually apparent. One
approach that could detect such subtle but significant
differences in the FHR during labor was recently
described; this approach used approximate entropy, a
mathematic formula quantifying regularity.'

Another technique that is capable of pattern recog-
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nition, reorganization of data and learning, is a bio-
logic-simulated intelligence or artificial neural network.
This novel approach is based on data reduction that
resembles the human pattern of thinking. In this study
we investigated the applicability of biologically simu-
lated intelligence to the assessment of antenatal FHR
records and tested this model against the resuits ob-
tained by the human expert.

Material and methods

The study population consisted of patients seen at
the Rambam Medical Center, Faculty of Medicine,
Technion Israel Institute of Technology, either at the
antenatal clinic or in the high-risk maternity unit. The
gestational age ranged between 36 and 42 weeks at the
time of NST recording. FHR and uterine contractions
were recorded for 30 minutes with the patient in a
semirecumbent position by means of an HP 8040A
(Hewlett-Packard, Boeblingen, Germany) external
monitor at a paper speed of 3 cm/min. The patients
were asked to mark each perceived fetal movement with
a handheld button. The recorded data (FHR, uterine
contractions, and fetal movements) were sampled into a
computer (Olivetti 380/M, Olivetti, Milan) with a digital
serial interface. The sampling rate was set to 1 second
so that each 30-minute NST generated 1800 values for
FHR and 1800 values for uterine contractions. The
sampled data of each NST session was stored in a
separate file for subsequent analysis. A baseline was
fitted with a first-order autoregressive digital filter,
which was applied to the recording twice, first in the
forward direction and then in the reverse direction,
thus eliminating phase shift.’® An algorithm to prevent
excessive excursions caused by large deviations in FHR
{e.g., accelerations and decelerations) was also used. A
set of programs processed the data and quantified the
following variables: baseline FHR, acceleration, decel-
erations, number of fetal movements, long- and short-
term heart rate variability, mean acteleration area,
mean deceleration area, the proportion of time FHR
acceleration was present during the 30-minute record-
ing (percent acceleration time), and the ratio between
the number of FHR decelerations and the number of
uterine contractions during the NST session. Accelera-
tions (210 beats/min for =15 seconds) and decelera-
tions (210 beats/min for =15 seconds) were classified
according ‘to amplitude and duration, as described in
Table I. The overall heart rate variation was calculated
by averaging 1-minute ranges in FHR values about the
baseline (mean minute range). Short-term variation was
‘calculated as the mean absolute beat-to-beat differ-
ence.”  Although autocorrelated  ultrasonographic
pulses were used for this purpose rather than fetal
electrocardiographic signals, an excellent correlation
exists between the two measurements’ and actual
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Table I. Quantified NST variables obtained by
automated analysis and presented to
input layer

Decelerations (10-15 beats/min, 15-30 sec)
Decelerations (10-15 beats/min, > 30 sec)
Decelerations (> 15 beats/min, 15-30 sec)
Decelerations (> 15 beats/min, > 30 sec)

Total No. of fetal movements

Overall variation (mean A amplitude)

Mean A amplitude during high FHR variation
Mean A amplitude during low FHR variation
STV, overall

STV during high FHR variation

STV during low FHR variation

No. of FHR decelerations/No. of uterine contractions
Mean deceleration area

Mean acceleration area

Total acceleration duration/monitoring duration
Total No. of FHR accelerations

Baseline FHR

STV, Short-term variability.

changes in either direction are detected by the former
method (although the actual beat-to-beat variation is
diminished). Fetal rest-activity cycles were also deter-
mined by the computer on the basis of the presence of
high or low heart rate variation. The average signal loss
in the records analyzed was 2.4% (43 of 1800 seconds).
Whenever missing data were encountered (because of
signal loss), a linear interpolation was introduced for
correction.

Each NST trace was analyzed by visual inspection.
Three examiners performed the visual analyses inde-
pendently. All were practicing obstetricians—experi-
enced in interpreting NSTs on a daily basis. We chose
to use multiple experts rather than a single expert,
because this would better represent a “real life” situa-
tion and lead to more consistent results. Thus with this
strategy “suspicious” traces (for example, a reactive
NST with several short-lived decelerations) would either
be considered normal or abnormal according to a
“majority vote” and would therefore be less influenced
by an individual reviewer’s definition and tolerance of
abnormal events (e.g., decelerations) in a given trace.

The reviewers were not given clinical information but
were advised that all women were in the latter part of
the third trimester. They had to state whether the NST
tracings were normal (né further evaluation required)
or abnormal (further evaluation or immediate inter-
vention mandatory). No specific guidelines were pro-
vided, and interpretation was performed in the same
manner. as in.daily. practice. The examiners agreed
unanimously on 816 NST traces (86%), whereas in 134
(14%} no complete interobserver consensus was
reached.

In this study a nonlinear artificial neural network of
the feed-foward type was used. This multilayered net-
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Fig. 1. Schematic representation of neural network architecture. Each of 50 hidden units is con-
nected to 72 raw data inputs and to all 17 computed variables (“features”). Output layer consists of

two neurons: 01, normal result; 02, abnormal result.

work was trained with backpropagation, which is the
emost widely used learning procedure.'® A major prob-
lem was the large number of inputs required at the
input layer. This was solved with the aid of URSUS, a
neural network simulator, developed in the faculty of
computer sciences at the Technion, Israel Institute of
Technology. URSUS provides a development and
working environment for neural networks, featuring a
neural network generator, a neural network simulator, a
graphic interface, and a tool kit of useful functions for
preprocessing and postprocessing of data. URSUS is
user friendly and enables the operator to define and
tun very large neural networks. It is capable of com-
pleting a partial network description provided by the
user and offers various extensions for the basic network
configuration. It may then train several configurations
in parallel and choose the optimal one providing the
best results. This considerably reduces the time re-
quired for training. In addition, each training cycle is
very fast, because the URSUS simulator itself is faster
than other simulators we have tried.

The layout of the artificial neural network used in this
study is shown in Fig. 1. The input layer is presented
with 3600 raw data (1800 FHR and 1800 uterine
contraction values) and 17 quantified NST variables
generated by- the computer (Table 1), as—previously
described. The inclusion of these 17 variables was
meant to provide the network with artificially derived
“hints,” which greatly facilitate learning. .

A hidden layer of 50. neurons is connected to the
input layer. Each hidden neuron receives input from 72
raw-data neurons and from all 17 computed variables.
The hidden layer is connected to an output layer
comsisting of two neurons. One neuron represents a

normal result and the other an abnormal result for a
particular NST. A naive postprocessing step was used to
interpret the network’s output. This step determines
(separately for each output unit and repeatedly for
every reasonable number of diagnostic misses) where to
place the threshold if no more than “n” misses of
abnormal cases (false negatives) is desirable. For ex-
ample, if we won't tolerate any false negatives, a high
threshold should be considered for the normal output
neuron, albeit at the cost of a parallel increase in the
false-positive rate. If one miss is to be allowed, the
threshold for the normal output neuron should be
lowered.

The network was trained by dividing the available
data into a training set and a test set. Training took
place by choosing input patterns (NSTs) from the
training set and allowing activation to flow from the
inputs through the hidden units to the output units
(feed-forward). The value of the output unit was then
compared with the documented diagnosis for each
pattern (as provided by the human experts). The dif-
ference (error) between the actual activation of the
output unit and the correct value was then used by the
backpropagation algorithm'® to modify all weights of

-the network so that future outputs approximate the

correct diagnosis. This step repeats itself until the
criteria for convergence are met (i.e., the error ceases to
decrease). Fig. 2 shows a.typical learning curve. A
control group was used.to define the. cutoff level, the -
point where optimal learning has been obtained. Test-
ing the network was accomplished by using the weights
derived in the training set and presenting the network
with input patterns (NSTs) to which it had not been
exposed. The performance of the neural net was exam-
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Fig. 2. Plot demonstrating training stage of neural network. Horizontal axis, Time (T) (or number of
iterations); wvertical axis, error (E) (i.e., difference between desired and actual output). Solid line,
Change in error as function of time. Initially error rapidly declines (i.e., network “learns” fast), and
then rate of change is decreased. Separate set of input patterns (control group) is used to define point

of minimal error (broken line). This is optimal point of convergence,

because only marginal improve-

ment is achieved by increasing number of iterations. Network leamns by backpropagation rule.

ined in relation to the human expert (the “gold stan-
dard”). Detection rate (sensitivity) was defined as the
number of NSTs in the test set correctly diagnosed as
being abnormal divided by the total number of abnor-
mal NSTs in the test set. False-positive rate (specificity)
was defined as the number of NSTs in a test set
correctly diagnosed as being reactive divided by the
total number of reactive NSTs.

The neural network program was run on a Sun 4/260
SPARCstation (Sun Microsystems, Inc., Mountain View,
Calif.). - '

Validation. To validate the performance of the neu-
ral network, we performed the following examinations.

Internal consistency. The neural network was trained
with a learning set of 530 NSTs. Each 30-minute NST
was divided into six segments of 25 minutes each (i.e.,
minutes 1 to 25, 2 to 26, 3 to 27, 4 to 28, 5 t0 29, 6 to
30). In this manner 3180 segments were obtained.

Another set of 264 NSTs was divided into 25-minute
segments as described above. One segment (minutes 2
to 26) served as the control group and another segment
(minutes 3 to 27) as the test group. After 2700 cycles
the neural network interpreted both the control gromp
and the test group as being normal in 175 traces.
Another 53 traces were interpreted as being abnormal
in both groups. The neural network judged 18 traces in
the control group to be abnormal, whereas the corre-
sponding traces in the test group were judged to be

normal. In another 18 traces this disagreement was
reversed: 18 traces in the control group that were
interpreted as being normal in the control group were
interpreted as being abnormal in the test group. The
results demonstrate an 86.4% internal consistency. By
improving the learning process (e.g., by dividing the
traces into longer or shorter segments and by increas-
ing the number of NSTs in the learning and test sets)
this figure should be expected to increase.

External consistency. The performance of the neural
network was evaluated against the human expert, once
for the control group (minutes 2 to 26) and-once for the
test group (minutes 3 to 27), with the same 264 waces.
The results obtained after 2700 cycles were nearly
identical, with the neural network giving conflicting
results in just two of 264 traces, demonstrating 99.2%
consistency. This remained unchanged with advancing

exposure to the same input data (tested up to 10,200
cycles).

Results

In the first stage the network was trained by means-of
a randomly chosen subset of 545 NSTs. All NSTs in this
set were similarly interpreted by the three experts
{(complete interobserver consensus). A total of 510
(93.6%) were interpreted as normal and 35 (6.4%) as
abnormal. Learning was accomplished after about
15,000 cycles (i.e., the number of times the network

ey
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Table II. Results obtained by testing network with NSTs that were similarly interpreted by all experts
(n = 271)
Test set
Cycle Threshold NN Sensitivity NA l AN l AA ! Specificity
2,003 0.9080 95 37.55 158 0 18 100.00
2,903 0.9282 104 41.11 149 1 17 94 .44
10,708 0.7503 242 95.65 11 2 16 88.89
12,208 0.6593 249 98.42 4 3 15 83.33
12,808 0.5597 250 98.81 3 4 14 77.78
12,808 0.5523 250 98.81 3 5 13 72.22
13,708 0.5250 250 938.81 3 6 12 66.67

NN, NSTs interpreted as normal by both eicpert and network; NA, NSTs interpreted as normal by experts and abnormal by

network; AN, NSTs interpreted as abnormal by exp
and network. :

erts and normal by network; 44, NSTs interpreted as abnormal by both experts

Table IT1. Results obtained by testing network with NSTs, some of which did not lead to complete

interobserver agreement (n = 319)

Test set
Cycle Threshold NN Sensitivity NA l AN l AA ‘ Specificity
2,000 0.9478 55 19.03 234 0 30 100.00
2,600 0.9248 90 31.14 199 1 29 96.67
2,600 0.8889 143 49.48 146 2 28 93.33
2,900 0.8797 165 57.00 124 3 27 90.00
2,900 0.7990 232 80.28 57 4 26 86.67
2,900 0.7925 234 80.97 55 5 25 83.33
3,802 0.7721 247 85.47 42 6 24 80.00
7,404 0.6704 273 94.46 16 7 23 76.67
8,906 0.6201 276 95.50 13 8 22 73.33
10,406 0.5939 276 95.00 13 9 21 70.00

For abbreviations see footnote to Table II.

evaluated the input data) when the performance of the
system stabilized (i.e., the criteria for convergence were
met). The closed recognition rate was almost 100%.
The network was then tested on 271 NSTs, 253 (93.4%)
interpreted as normal and 18 (6.6%) as abnormal by the.
human experts. Here too there was complete interob-
server agreement. The results are shown in-Table II
‘The most important determinant of the system’s per-
formance is the value assigned to the subset AN (abnor-
mal diagnosed as normal) in the test set, which defines
how many false-negative cases are acceptable. This
value depends on-the threshold for the normal-output
neuron (the likelihood of normal NST). If a high
threshold was used (e.g., 0.908), the sensitivity was
100%, but there was an overhead of a high false-positive
rate (62.5%). By decreasing the threshold to 0.75, the
sensitivity decreased to 88.9% (two false-negative results
were introduced); whereas the false-positive rate de-
creased to 4.3% (the system correctly diagnosed 242 of
253 normal NSTs). Lowering the threshoid further
resulted in improved specificity, but the number of false
negatives became unacceptably high. The abnormal
neuron gave similar results.

In the second stage the network was trained and
tested on 950 NSTs, 816 from the first stage and an
additional 134 for which the interpretation did not lead
to complete interobserver consensus. Each of these
NSTs was assigned an interpretation according to the
majority decision (i.e., two of three). Training was
performed on a subset of 631 NST5, 571 (90.5%)
interpreted as normal and 60 (9.5%) as abnormal by the
human experts. The test set included 319 NSTs, 289
(90.6%) interpreted as normal and 30 (9.4%) as abnor-
mal by the human experts. Here too learning was
completed after about 15,000 cycles, when the closed
recognition rate was almost 100%. Table III shows the
results of the test. On the basis of the normal neuron
(01), a threshold of 0.8 (cycle 3200) yielded the best
result, specificity 80.3% and sensitivity 86.7%. There
were four false-negative cases.

-Comment - e i e -

Artificial neural networks are computer models in-
spired by the structure and behavior of real neurons.
Like the brain, they can recognize patterns, reorga-
nized data, and, most interesting, learn. Artificial neu-
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ral networks are typically composed of interconnected
units that serve as model neurons. The units are con-
nected by links that act as the axons and dendrites. The
function of the synapse is modeled by modifiable
weight, which is associated with each connection, rep-
resenting the connection strength at the synapse. The
link passes the weighted output value to another unit,
which sums up the values passed to it by all other
incoming links. If the total input value exceeds some
threshold value, the unit fires. Modifications in the
firing pattern constitute the learning. This is achieved
by changes in the weighting factors on the links and is
analogous to changing the effectiveness of the synapses
in the brain so that the influence of one neuron on
another changes."’

Artificial neural networks are made up of three types
of units. The input units take in information from the
outside. The output units send out signals that are
visible to the external world. The hidden units act as a
go-between from the input to the output unit. They
neither receive input directly from the outside nor
produce a visible output. To develop a predictive
model, the network analyzes multiple parameters pre-
sented at the input as the training data set, with the
number of variables corresponding to the number of
input neurons. The input neurons are connected to the
neurons in the hidden layer. Similarly, the neurons in
the hidden layer are connected to an' output layer, the
results to be modeled. The entire data set is run
through the network numerous times, with the network
attempting to vary the interconnections between the
input-hidden layers and the hidden-output layers until
all inputs match all outputs (i.e., a specified outcome is
obtained for each input). The model is then ready for
use as a predictive tool.

In this study the neural network was efficiently
trained by both training sets, with a diagnostic closure
of nearly 100%. If the expert’s interpretations are taken
as the “gold standard,” the neural network produced
good resuls for both test sets. In the “clear-cut” experi-
ment the detection rate was 89% and the false-alarm
rate was 4.35% when the threshold was set at 0.75.
When the - training set and the test set contained NSTs
that were interpreted by one expert different from the
other two human analysts, the detection rate was 87%
and the false-alarm rate was 19.7%, with a threshold of
0.8 and 77% and 5.5%, respectively, with a threshold of
0.67. These results demonstrate better agreement be-
tween the neural network and the human analyst than
was shown for automated FHR analysis. In a compari-
son between computerized FHR analysis - and visual
NST interpretation, only 44.4% of nonreactive tests did
not meet the required computer criteria for a normal
test, whereas 34% of tests that did not meet those
criteria were nonreactive. The false-alarm rate was
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6.9%." Only cases with a priori interobserver dgree-
ment were compared. In the current study 60% of NSTs
interpreted -as .abnormal by the neural network were
similarly interpreted by the experts in the two data sets
tested. It should be pointed out that in the former study
the diagnostic performance of the computer was similar
to the performance of the human observer in relation to
fetal outcome, and there was a highly significant de-
crease in the intervention rate when computerized in-
terpretation was used as opposed to visual assessment.'®
In this study no attempt was made to examine the
performance of the neural network in relation to fetal
outcome. The latter may be influenced by many factors,
which are not necessarily reflected by an NST per-
formed at various intervals from delivery. Also the test
does not simulate the risk conditions of labor. These
and other factors account for the relatively low sensitiv-
ity and positive predictive value of the NST.*®

Poor agreement between visual interpretation and
automated NST analysis was demonstrated in two other
studies.* *!

Unlike expert systems to which knowledge is explic-
itly provided, neural networks define their own rules (or
decision criteria) in an implicit manner by modifying
the weights of each connection so that the network
produces a better approximation of the desired output.
Because knowledge is distributed over the entire net-
work, the latter is tolerant to both subtle distortions of
weights and to incomplete or noisy inputs. These char-
acteristics not only provide the network with-its cred-
ibility, but also with its most important feature: gener-
alization, the power to generate a reasonable output to
an input that was not present in the training series. This
fundamental characteristic that enables the network to
function more accurately in the clinical environment is
lacking when other statistical strategies are used.

Previous clinical experience with neural networks
demonstrated encouraging results. Fifteen input vari-
ables were used to predict the weight of fetuses sus-
pected of having macrosomia,” and 41 variables were
used in an attempt to diagnose myocardial infarction in
patients arriving at the emergency department with
chest pain.” The networks performed substantially bet-
ter than reported for physicians or for any other ana-
lytic approach (e.g., logistic models).

Unlike the two previous studies,” ** where outcome
was indisputable (newborn’s weight or clinical diagnosis .
of myocardial infarction), the end point in the current.
study is less clearly defined. Visual interpretation of the
NST is subjected to substantial interobserver and in-
traobserver variation.” * '

Reviewers of NST records are often asked to rate the .
NST explicitly (Is the trace reactive [normal}, suspicious
[questionable], nonreactive [pathologic], or implicit [Is
further evaluation or intervention mandatory?]). We felt
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that by asking the experts to make management deci-
sions we simulated a familiar situation to which they
were exposed in daily practice. To eliminate interob-
server variation, we included in the “clear-cut” learning
and test sets only traces that were interpreted similarly
by all reviewers. When NSTs were included that did not
have complete interobserver consensus for their inter-
pretation, there was less agreement between the net-
work and the human raters. Whether this was because
of a more accurate interpretation of NSTs by the
network, which identified and used new information,
remains to be established. It should be pointed out that
the NST features are a function of gestational age. As
the fetus matures, its sleep cycles show less variability
and the awake phase produces more dramatic patterns
than in the younger fetus. Other behavior patterns
(e.g., sucking) will likely produce differing interpreta-
tions by the experts, which may confuse the network.

This study represents the first reported attempt to
use a very large number of input variables in the clinical
setting. In a preliminary experiment we have presented
the input layer with either raw FHR data or with 17
quantified FHR variables (which were generated by a
computer). The network did not demonstrate optimal
convergence, and the diagnostic closure was not as
satisfactory as when both inputs were used in parallel. If
the neural network could receive the output as part of
the input, the learning procedure would have been an
easy task. This, however, is not feasible, so by introduc-
ing at the input information that is derived from the
basic raw data (“hints”) we can use a smaller network
and substantially shorten the learning procedure. A
large enough network can approximate any reasonable
nonpolynomial function.” * Theoretically then learn-
ing could also have been accomplished by means of the
raw data alone. However, this would require a very large
and fast network and an extremely fast computer,
making it virtually impractical.

The ability of the network to discover relationships in
the data that may not be immediately apparent to
physicians, its resistance to substantial input perturba-
tions (as is often the case with “noisy” FHR records),
and its ability to improve by learning new input data are
the primary advantages of the biologically simulated
intelligence. In this study we-evaluated the ability-of the
neural network to discriminate between normal and
abnormal NSTs. The results obtained are encouraging
and would justify further investigations to evaluate the
efficacy and reliability of this new technique in inter-
preting FHR records.
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